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Numerical Simulation of BGK-Burnett Equations

" ABSTRACT

Recently! it has been shown using Boltzmann’s H-Theorem that the conventional Burnett
equations violate the second law of thermodynamics, and hence must not be employed for fluid
dynamic simulations. To overcome this difficulty, a new set of equations, designated the BGK-
Bumett equations was derived recently by the authors. A second-order distribution function was
derived by employing the Chapman-Enskog expansion on the BGK-Boltzmann equation. .
Moments of the BGK-Boltzmann equation with the collision invariant vector using the second-
order distribution function yield the BGK-Bumnett equations. It has been shown by the authors®
that the BGK-Bumnett equations are stable to small wavelength disturbances and that they yield
results consistent with the second law of thermodynamics. In order to prove that these equations
are indeed entropy consistent, it is shown that the second-order distribution function does not
violate Boltzmann's H-Theorem. This new set of equations must be used for computing
hypersonic flows at moderate Knudsen numbers. The BGK-Bumett equations are employed to
compute the hypersonic shock structure. The results of the computations show that uﬁder certain
flow conditions, the conventional Burnett equations violate the second law of thermodynamics

while the BGK-Burnett equations provide entropy consistent results.

1 RBK-RKA
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INTRODUCTION

In one of the earliest attempts to solve the Bumett equations, Fiscko and Chapman® solved the
hypersonic shock structure problem by relaxing an initial solution to steady state. They obtained
solutions for a variety of Mach numbers and concluded that the Burnett equations do indeed
describe the normal shock structure better than the Navier-Stokes equations at high Mach
numbers. The equations were however unstable when the grids were made progressively finer. In
a subsequent attempt, Zhong* showed that the equations could be stabilized by adding a few ad
hoc super-Burnett terms (linear third order terms, in order to maintain second order accuracy) to
the stress and heat transfer terms in the Burnett equations. This set of equations was termed the
“Augmented Burnett” equations. The Augmented Burnett equations did not present any stability
problems when they were used to compute the flow parameters in the hypersonic shock structure
and hypersonic blunt body problems. However attempts at computing the flowfields for blunt
body wakes and flat plate boundary layers even with the Augmented Burnett equations have not
been entirely successful. It has been conjectured by Chapman et. al”® that this instability may be
due to the fact that the Burnett equations violate the second law of thermodynamics at higher
Knudsen numbe-rs.
The main objectives of the present work are:
a) To formulate a methodology for deriving and integrating a new set of entropy
consistent Bumnett equations (designated as BGK-Burnett) that can be extended to higher
dimensions.
b) To check if the constitutive relations for the BGK-Burnett stress and heat transfer terms

correctly model the flow properties at high Knudsen numbers.
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c) To computationally check if the BGK-Burnett equations are stable to small wavelength

disturbances.

The second-order distribution function is derived by representing the collision integral in the
Bhatnagar-Gross-Krook (BGK) form and considering the first three terms in the Chapman-
Enskog expansion. The BGK form of the collision integral assumes that the collision processes
are predominantly binary in nature. In deriving the second order distribution function, an as yet
unanswered question is the approximation for the material derivatives that appear in the second
order terms. In a recent attempt®, the first and second order distribution functions were obtained
iteratively by perturbation analysis of the 1-D BGK-Boltzmann equation. In this analysis the Euler
equations were used to approximate the material den’vﬁtives in the first order distribution
function. Moments of the BGK-Boltzmann equation with the collision invariant vector and the
first order distribution function yield the Navier-Stokes equations. In order to keep in step with
the iterative process the Navier-Stokes equations were used to approximate the material
derivatives in the second order terms. The BGK-Bumett equations are obtained by taking
moments of the BGK-Boltzmann equation with the collision invariant vector and the second-order
distribution function. This set of equations contains all the stress and heat transfer terms reported

by Fiscko and Chapman’ and has additional terms which are similar to the Super-Burnett terms.
In order to prove analytically that these equations are indeed entropy consistent it has been shown

that the second-order distribution function does not violate the H-theorem. Since the definition of

the Maxwellian and the higher-order distribution functions used in deriving the BGK-Burnett
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equations takes into account the internal energy of the molecules and further does not assume the
molecules to be monoatomic, a modified H-function has been formulated to prove the H-theorem.

In order to ensure that the entropy gradient remains positive throughout the flow field, a set of
boundary conditions has been derived using the Gibbs entropy equation. It has been shown that a
positive entropy production can be ensured by setting the heat transfer terms to zero at stations

far upstream and far downstream of the shock.

1-D BGK-BOLTZMANN EQUATION

The 1-D Boltzmann equation can be written as follows, using the BGK approximation for the

collision integral J(£1).
of o 0 '
_a—l-+v-&=,](f,f)=\’(f()—f) - — (1)

In the above equation, f denotes the distribution funétion, v denotes the molecular velocity, J(£,f)
denotes the collision integral, and v denotes the collision frequency. In this representation the
non-linear collision integral is approximated by a single relaxation time model. This approximation
assumes that any non-equilibrium distribution function will settle down to the equilibrium

distribution exponentially.

ZEROTH-ORDER (MAXWELLIAN) DISTRIBUTION FUNCTION
For the special case of collision equilibrium, the distribution function takes the form shown in eq.

(2). It can been shown that this is both a necessary and sufficient condition for collision

equilibrium.
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£=£0 = Iﬂ-(%) 2 exp[—ﬁ(v - u)2 - -II;:I

0

@
Dg denotes the number of translational degrees of freedom, u denotes the fluid velocity and

= —-—211{'1‘. I denotes the internal energy that accounts for the energy contribution due to all the

non-translational degrees of freedom and I denotes the average internal energy; and is given by

the expression

_(2+Dg)-D¢ |
Ip = 2 -7 RT | 3)

HIGHER-ORDER DISTRIBUTION FUNCTIONS

The various higher-order distribution functions are obtained by representing them as a Chapman-

Enskog asymptotic series expansion.

£o£© erg2e@y ey )

where, ﬁ:(%) denotes the Knudsen number. The first two terms of the Chapman-Enskog

expansion give rise to the first-order distribution function f=f (0) +Ef (1), and the first three
terms of the Chapman-Enskog expansion give rise to the second-order distribution function,
f=f 0 . Ef (M 4 §2f (2). In order to obtain exact analytical expressions for the first and second-

order distribution functions the BGK-Boltzmann equation is non-dimensionalized by defining the

following non-dimensional variables
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v ‘t~ - tCLmS_ {, Vlw (5)

| where, L denotes the characteristic length, Cpmg denotes the root mean square molecular velocity

and A, denotes the free stream mean free path. On substituting the non-dimensional variables, eq.

(1) takes the following form:

g[-‘;ﬁ + vgxi] = {0 -g) R - ©

THE FIRST-ORDER DISTRIBUTION FUNCTION
Substituting the first two terms of the Chapman-Enskog expansion, f = f (0) +Ef (1) in the BGK-

Boltzmann equation and equating like powers of the Knudsen number yields:

0 - ;[ () +v§;(f(°))] - 0

On expressing f M- f (0)<D(1) and subsﬁmﬁng in eq. (7) the following expression is obtained. In
this expression the 1-D Euler equations have been used to express the time derivatives in terms of

the spatial derivatives.

q)(l) = _E%A(l)(l ) 6[3 A(z)(l ) 8)
where,
W0 =| 2 2l=)
AY(Lc)= LB G-7) c } ©)
A®,0)= [Bc2(3 —y)+ (372' ) _4 ((73- 13) } (10)
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and ¢ denotes the peculiar or thermal velocity, c=v-u. The first-order distribution function satisfies

the property (¥, f) = (‘I’, f (°)> . Hence <‘Y, Ef (l)> =0

SECOND-ORDER DISTRIBUTION FUNCTION

The second-order distribution function is obtained by considering the first three terms in the
asymptotic Chapman-Enskog expansion for the distribution function. Substituting the expression
for the second order distribution function in the non-dimensional 1-D BGK-Boltzmann equation

and equating like powers of & yields:
O (¢M) 452 (¢M) = _4¢@
g(f )+vai(f ) =% a1

From the above equation the following equation for f () s obtained:

SOHOR)

Since the field vector Q is the same, for the Euler , Navier-Stokes and BGK-Burnett equations,
moments of the distribution function with the collision invariant vector ¥ must be the same for

any distribution function. Hence, the second-order distribution function must satisfy the property

(¥, f )= <‘Y, f (0)> . This condition translates to the following equation:

<‘P,§2f(2)> - <‘P v[@t ((De®) +v 2 = (f(°)¢(‘))]> (13)
An expression for the second-order distribution function satisfyng the above equation is given by:
_0) , g0 _ é[ (1000) + 2 (utD00). (f(o)q,(l))] ”
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where,

- 1 ~(1)~ 1 ~(2)~ \Ou

30 =--E;A(l)(l,c)%—g—vA(z)(l,c)g (15)

K(l)(f,c)=[ch+e—2—Tc+93c3] | (16)
B B

K(Z)(T,c)=[ae4c2+esf+e6] | - an

In the above expressions 1 = fl— and ¢ denotes the peculiar or thermal velocity, ¢ = v-u. The
0

coefficients 8;, i = 1,2....6 are functions of the specific heat ratio v . The exact expressions for

these coefficients are given in the appendix.

THE BGK-BURNETT EQUATIONS
The various fluid dynamics equations are obtained by taking moments of the BGK-Boltzmann

equation with the collision invariant vector

V2 !
b g ={:1, v, (I +‘?J:| (18)

The moment of f is defined as(‘*’,f):j j‘i’f dvdl. On taking moments of the.BGK-

0 -

Boltzmann equation, the following generic equation is obtained.

gt(\y f)+—‘¥vf ( ¥, - f)> (19)
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On substituting the zeroth, first and second-order distribution functions the Euler, Navier-Stokes
and BGK-Burnett equations are obtained respectively.

o0 o0 a o0 o0 a0 oo
Ba?jj‘ﬂ’dvdl = Ijvt‘l’dvdl =vJ' jT(fo—f ) dvdr=0 (20)
0

0 —0 0 - -0

Moments of the BGK-Boltzmann equation with ¥ using the second-order distribution function
yield the BGK-Burnett Equations.

a:< w r© 4 ee® 1260 )4 > (\y o(f@ +e5® 4 2¢()) ) <‘I’,v(f(0) ~1) > (él)

The 1-D BGK-Burnett equations are represented in conservation law form as:

i v B
6—5?_+aacx+aacx *aan =0 22)

The elements of the field and flux vectors are:

p pu 0 0
Q=|pul G =| p+pu? | G = —<N-S and GB=| B (23)
pe pu + pue —utiI s q N-5 —U‘CE +q

The Navier-Stokes and BGK-Burnett stress and heat transfer terms are given by the following

-

expressions.

N-§ or

L -S2 :“-g—:—. and q _k__é: (24)
B _P_z-—a(‘)(%x—])z + a(ﬂ%[%) . 8(3);1;_(%)2 . a(4)%(%z)(%)_
gy o2y

o) 32 () )]
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22l @(D-0() 03]
I LT b
10 {25 I R

+b(10) ._.l__ (ﬂ) ’
T2 pr \ &

(26)

The coefficients a® - 2™ and b™ - b"? in the expressions for the BGK-Burnett stress and heat

transfer terms are functions of ‘y ’ and are given in the appendix. The BGK-Burnett stress and

heat transfer terms have two sets of terms of orders u2 and u3. The former results when the
Euler equations are used to express the material derivatives in terms of the spatial derivatives and -
the latter is obtained when the Navier-Stokes equations are used to express the material
derivatives in terms of the spatial derivatives. When only terms of order pz are considered it is

observed that the derivatives in the expressions for the stress and heat transfer terms are identical
to the derivatives reported by Fiscko and Chapman’. The coefficients of these derivatives are,
however, very different to those in Ref. 3. Table 1. shows the comparison between the BGK-

Burnett coefficients and the coefficients of the Burnett equations in Ref. 3. When terms up to the
order p> are considered it is observed that there are many non-linear terms (products of |

derivatives) in addition to linear third-order derivatives. These derivatives are similar to the super-
Burnett derivatives in Ref 3. Table 2. and Table. 3. show the comparisons between the

coefficients of the BGK-Burnett derivatives and the coefficients of the augmented Burnett terms

evaluated by Zhong®.

10 RBK-RKA
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LINEARIZED STABILITY ANALYSIS
It has been shown by Bobylev’ that the conventional Burnett equations are not stable to small

wavelength disturbances. Hence the conventional Burnett equations tend to blow up when the
mesh sizes are made progressiiwely finer. In order to investigate the stability aspects of the BGK-
Burnett equations a model problem is considered which studies the response of a uniform gastoa
1-D periodic perturbation wave. The initial density, temperaturc and veloéity of the undisturbed

gas at time t =0 are pg, Tp, andug =0 respectively. Att=0 the gas is perturbed such that:

10X

p=pg|1+Cpels @7
iox

T=Ty| 1+Cpe 0 | (28)
iox

u=RT,| Cse (29)

Since the ‘perturbations are assumed to be small the magnitudes of the coefficients in the

expressions (27)-(29) are required to satisfy the inequality ICi]<<1, (k=1,23).

Ho

PovRTo

The characteristic length Lo = =0.783\, where A denotes the mean free path. The

(;t = 4.92%= 492Kn . Introducing the perturbed
L
Lo)

quantities in the continuity, momentum and energy equations and simplifying yields:

non-dimensional circular frequency o =

11 RBK-RKA

v e




Numerical Simulation of BGK-Burnett Equations

av' V' V' Vv 3V
—+M;—+M;—+M +M =0 30
o PMig s+ My~ + My Me = 3 (30)
p o 1 0 o 0 0 0 0 &
veleb My=[1 0 1|, Mp=lo G-v) o Mz=[EZ— o I—|
T 0 (y-1) o X 2
( ) -O 0 Pr 0 b( )('Y—l) 0
0 0 0
a0
My =|0 — 0
50
b —
o o (r-1)
L RPr

The non-dimensional initial conditions for eq. (30) can be denoted in vector form as

< iox' X . .
V=0 = Ve'®* | where x'= 1o Let us assume the solution of the above equation to be of the
0

form

V'= VeloXett GD.

t . . . .
where, t'= 2P0 The complex variable ¢ = a +if. a denotes the attenuation coefficient and B
Ho

denotes the dispersion coefficient. For stability a <0 as L decreases or in other words the flow
must attenuate as the Knudsen number increases. Substituting eq. (31) in eq. (30) and simplifying

yields eq. (32) when Euler equations are used to express the material derivatives.
[«m +ioM; -0 M, —io 3M3]voe‘°°"'e°" =0 (32)
For a non-trivial solution the following condition must be satisfied

‘@I +ioM; - 02M, —io 3M3l =0 (33)
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When the Navier-Stokes equations are used to express the material derivatives in terms of the

spatial derivatives the following equation is obtained:

[®1+in1 ~02M, -io3M; +m4M4]v0ei°°-’"e“’" =0 (34)
For non-trivial solutions the following condition must be satisfied:
\¢1+ili—m2M2—im3M3+co4M4| =0 C35)

The trajectory of the roots of the characteristic equations (33) and (35) is plotted on the complex
plane on which the real axis denotes the attenuation coefficient and the imaginary axis denotes the
dispersion coefficient. For stability it is required that the roots lie to the left of the imaginary axis
as the Knudsen number increases. Fig(s) 1-4 show the trajectory of the roots of the characteristic
equation as the Knudsen number increases. From the plots it is observed that unconditional
stability is guaranteed only when the Navier-Stokes equations are used to express the material
derivatives in terms of the spatial derivatives. It must be noted, however, that the linear stability
analysis does not consider the many non-linear terms - powers and products of derivatives - that
are present in the BGK-Burnett stress and heat transfer terms. Hence, this analysis, is at best only
a necessary condition for the stability of these cquations. A more rigorous proof of the stability of

these equations involves verifying the Boltzmann's H-Theorem.

BOLTZMANN’S H-THEOREM

The BGK-Burnett equations must satisfy the second-law of thermodynamics. There, however, is
no acceptable definition of entropy for a gas in a state of non-equilibrium. Physical intuition tells

us that an isolated system will evolve from an arbitrary initial state to a state of equilibri_um.

13 RBK-RKA
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Boltzmann’s H theorem formalizes this notion, and also makes explicit the manner in which this
evolution proceeds. A spatially homogenous gas is defined as one in which the“density does not

vary with position. Boltzmann’s H theorem states that for a spatially homogenous gas the

inequality, %(H) <0, must be satisfied when the gas approaches equilibrium. The quantity H

[+ o]
which is shown to be the kinetic theory equivalent of entropy’ is defined as H= If Infdv. In

—c0

arriving at this definition of the H-function Boltzmann made the following assumptions:
8) The molecules comprising the gas do not have any internal energy. Hence the H
function was defined only over the range of molecular velocities.
' b) The gas was assumed to be monoatomic.
Since our definition of the Maxwellian and the first and second order distribution functions takes
into account the energy contribution due to the various non-translational degrees of freedom and
further does not assume the gas to be monoatomic, the definition of H must be modified to
accoun't for these differences. The modified definition of the H function can be shown to reduce to

the classical (Boltzmann) definition of H for the specific case of a monoatomic gas.

MODIFIED H-FUNCTION

The change in entropy in classical thermodynamics is given by the following expression:

(s2-51)=Cy In2 _Rrin22 (36)
T P1

! It must be noted that entropy according to classical thermodynamics is defined only for equilibrium systems. The
quantity “H’ , however, is defined even for non-equilibrium systems.

14 ' RBK-RKA
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where the subscripts ‘1’ and ‘2’ denote thermodynamic variables at equilibrium stations far

‘upstream and far downstream respectively. The absolute entropy is given by the following

expression up to an additive constant.
s=CyInT-Rlnp+R& ‘ 37

The above expression can be cast in the form

_ Inf
s= Rl:lnp-!-(y_l) eoJ (38)

1 . . .
where B = RT' We now need to devise a method to arrive at the above expression from the

Maxwellian distribution function which is also the equilibrium distribution function. The 1-D

Maxwellian distribution function is given by the expression

cp=P B - L _pv-u)? - —
—F—lo\/;exp{ I B(v u)] (39

(3-7)
Py-1)

lnf(o) = lnF:[lnp+%lnB+ ln{ 4{"7)‘/,} ﬁuz}

where the average internal energy Iy = Equation (40) can be rewritten as:

(41)
=) N
G-n ZB( ) +ah)
On rearranging the terms in eq. (41)
n 0) (5- ) np+—InB+In ‘4(7 )
1n£(® 251(_7) [lp InB l{m} } -

- ZB(I + _} +(2Bu)v
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Equation (42) is indeed a linear combination” of the collision invariants. Hence,

(o855

(43)
T ]-o inf(®) - 261 (5-) A +v af(O) dvdl =0
. (3-7)) & |

ox

The above equation can be recast in the following form by making use of the identity

(...

0 5-3y) af(o) af(o)
<{1+lnf()—2BI((3__:)}( o +v r” J>=

© o (44)
j' I {1+ lnf(o) - 21 (5— 37) af(o) + vafa(:)}
0 —0

dvdl = 0
B-v)j o

On simplifying , eq. (44) can be expressed as

]:]’(% vg;)[f@ inf®) +£2.5(:3_*).f<°> ,,,B} dvdl = 0

(45)
7-1)
-0
The above equation can be expressed in the following compact form
O (5 4 2 (1O -
200 2(0)-o o
where the functionals H(o) and Hs,o) are defined in (47) and (48) as:
HO - ”[f«» ing® + 5230 0 lns]dv a @)
0 —o 2(7 - 1)

2 It can be shown that the moments of the BGK-Boltzmann equation with any linear combination of the collision
invariants equals zero. Hence the need to express equation (36) as a linear combination of collision invariants.
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O _ T [ 0150 + 6=31)0)
H{ ‘([—J;v{f( Infl rag g b vl (48)
On evaluating the moments in eq. (47) the following expression is obtained for H(o)

(0) = _ |
H p[lnp + o ea] | | (49)
On comparing eq(s). (49) and (38), |

ps=-RH) (50)

The additive constant &, is a function of the specific heat ratio y and the gas constant R. The
definition of the H-function can be extended to any distribution function. Accordingly the

functionals H and H,, are defined as shown in éq(s). (51) and (52).

H-£j[fl f+2(y_ 5 fin B]dvdl (51)

HV=TT\{H f+z(y_ gfl B]dvdl (52)

It can be seen that the expression for H reduces to the classical definition H = j' J‘f InfdvdI, for

0 —o0
the specific case of a monoatomic gas (i.c. Y = % ). For a spatially inhomogenous gas Grad® has

shown that the following inequality must be satisfied when the gas approaches equilibrium.

3 This relation establishes a link between Boltzmann's H-Theorem and the classical thermodynamlcs conccpt of
entropy. It must be pointed out that there is no rigorous justification to extend this definition to include H-functions
derived from higher-order distribution functions.

e e T
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0
(1) +—(H,)$ 0 63

The above inequality will be shown to be true for the first and second-order distribution functions.

The first and second order distribution functions are given by expressions (54) and (55).

e, gf(o)q)(l) = f(o)(l + gq;(l)) o (54)

£= £ + 000 1 g2 0@ = O 14800 + £20() (55)

On expressing In(f) as a Taylor series and considering only terms up to the second power in the

Knudsen number the following approximations are obtained for the first and second order

distnbution functions.

2[ (1)
ln[f(o)(l " gcp(‘))] =1nf(® 420l _ E—[i;—}— (56)

2o+ é(;[,a)]2
2

ln[f(o)(l +eol) 4 tzcb(z))] =1nf® + (20 + g20)) - (57)

The H-Balance Equation for the Boltzmann equation is obtained by evaluating the moments in the

following equation.

(H)+—(H,,) jjv(f“” f [nx f—zg Y))ﬁl}dvdl (58)

On substituting eq(s). (54) and (56) in the above equation and retaining only terms up to the first

power in £ (Knudsen number) the right hand side (RHS) of the above equation takes the form:

18 RBK-RKA
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T I —v&f(o)ib(l)[lﬂnf és _3’)') BI:|d vdl (59)
0 -

The above integral equals zero as moments of the first-order distribution function with a linear

combination® of the collision invariants are being evaluated. Since the first-order distribution
function satisfies the property <‘I’; Ef (O)<D(l)>= 0, eq. (54) equals zero. Hence the first -order

distribution function satisfies Boltzmann’s H-Theorem. On evaluating eq. (58) up to the second

power in £ , the RHS of the equation takes the following form:

f [ { @) 4 2600 1 £0) _ g0 A5=31) ES 3;) ng(o)[q,(l)]z}dv a
(60)
2 © _26=3) 3l 40
”a £ {l+1nf G Bl}d dI
The second integral equals zero as the second-order distribution function satisfies the moment

property (‘P; Ezf (2)> = (‘i’; £2f (0)d>(2)> =0. For reasons given earlier moments of the second-

order term with any linear combination of the collision invariants equals zero. Hence eq. (60)

simplifies to the following :

-T ngf(")[o(‘)f dv dI (61)
0 o

On substituting for d)(l) from eq. (8) and evaluating the moments

4 Moments of the first and second-order distribution function with any linear combination of the collision
invariants equals zero.
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It must be noted that eq. (57) is always less than zero. Hence the second-order distribution

function satisfies Boltzmann’s H-Theorem. It has been proved conclusively that both the first and

second-order distribution functions satisfv the inequality

gt.(u)+§(nv)so

As a consequence the BGK-Bumnett equations which are obtained from the BGK-Boltzmann

equation by using the second-order distribution function are entropy consistent !

NUMERICAL EXPERIMENTS
The BGK-Burnett equations were numerically integrated using a hybrid algorithm for the

hypersonic shock structure problem. In the hybrid algorithm the inviscid fluxes were split using
the KWPS scheme and the viscous and BGK-Bumnett fluxes were central differenced. The
objective of this experiment was to test the computational stability of the entropy consistent
BGK-Burnett equations by integrating thein numerically on progressively finer grids. In order to
test the stability of the algorithm, the scheme was applied initially to a coarse mesh of 101 grid
points. The number of grid points was increased to 501. The reference parameters used for Argon
are similar to those used by Zhong'. The.results of the computations are shown in Fig(s) 5-12.
Fig(s) 5-8 compare the entropy plots of the BGK-Burnett equations with the entropy plots of the
Burnett equations of Fiscko and Chapman’®. Fig(s) 9-12 compare the normalized temperature and

specific entropy profiles of the BGK-Burnett and Navier-Stokes equations.
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CONCLUSIONS
An entropy consistent set of BGK-Burnett equations has been derived from first principles. These

equations have been numerically integrated to compute the hypersonic shock structure. The
equations are computationally stable for the range of grid points and Knudsen numbers for which

results are presented.

PROPOSED RESEARCH

An attempt is being made to compare the expressions for entropy balance obtained from kinetic
theory (Boltzmann’s H-Theorem) and classical thermodynamics, and account for the differences
between the two expressions. Since the BGK-Bumett equations in 1-D have been proven to be
entropy consistent a similar analysis for 2-D BGK-Burnett equations will be carried out.
Numerical solutions for hypersonic flow past blunt bodies will be computed using the 2-D BGK-

Burnett equations.
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Burnett and BGK-Burnett Coefficients

Euler equations have been used in the BGK-Burnett equations to express the time derivatives in
terms of the spatial derivatives.

Table: 1
Stress and Heat Fiscko & BGK-Burnett Fiscko & BGK-Burmnett
Transfer Chapman (Air) (Air) Chapman (Argon)
Coefficients = 14 y=14 (Argon) Y = 1.6666
y = 16666
a0 1.749 0.96 1.749 0.446
2 -388.024 -459.2 -281.216 -271.472
a(3) 388.024 459.2 281.216 277.472
a4 -257.726 -5625.0 -186.784 -1216
,0) 403.522 -5166.0 292.448 -938.11
a(6) 74.62 -5625 54.08 -1216.0
b(l) 10.831 -21.633 10.831 -9.896
p(?) -2.269 0.183 -2.269 -0.194
b(3) -2.06 0.533 -2.06 -0.443
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Augmented Burnett and BGK-Burnett Stress Coefficients

_ Navier-Stokes equations have been used to express the time derivatives in terms of the spatial

derivatives.
Table: 2
Stress Zhong (Air) BGK-Bumett Zhong (Argon) BGK-Burnett
Coefficients y=14 (Air) ¥ = 1.6666 (Argon)
y=14 , y = 1.6666
a(1) 1.749 0.96 1.749 0.446
a(2) -388.024 -459.2 -281.216 -277.472
NE) 388.024 459.2 281.216 277.472
a(4) -257.726 -5625 -186.784 -1216
a(5) 403.522 -5166 292.448 -938.11
a(6) 74.62 -5625 54.08 -1216
KE) 0 4592 0 -277.472
.® 0 642.88 0 462.268.
a9 63.778 459.2 46.222 277.472
a(10) 0 0.64 0 0.888
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Augmented Burnett and BGK-Burnett Heat Transfer Coefficients

Navier-Stokes equations have been used to express the time derivatives in terms of the spatial

derivatives.
Table: 3
Heat Transfer Zhong (Air) BGK-Burmnett Zhong (Ar) BGK-Burnett

Coefficients (Air) (Ar)
v 10.831 -21.633 10.831 -9.896
e -2.269 0.183 -2.269 -0.194
NE) -2.06 0.533 -2.06 -0.443
b(4) 0 44 0 4.666
NE) 0 1406 0 866.84
b(6) 0 -1406 0 -866.84
b(7) -2186 1406 <2041 866.84
b(8) 0 0.7 0 0.833
5 ) 0 -1.4 0 -1.666
b(lO) 0 -22500 0 -13870
b (1) -179.375 0 -130 0

25 RBK-RKA




'SIATJEALISP [enjeds 9T JO SULIA) Ul SIABALISP [BLIaJew oy} sso1dxa 0} pasn uaaq aAey suonenbs oy |

0 JUSIOIJJO0)) UOBNUINY

002 001 00 0°01- 0°0C-

_ T [ T 0°8-

L g
e e et L LLEED 1L AAMARRRAS jrossmennnnnesees — 0V &
" " go;
“ : @
m m - %
w w | S
M e —00 9 A
n " u o
m : : i o
m m w =
m w m . Q.
S N N T 10 8
e -

mr ..................... "r ..................... ..................... L ................ — Ow

SisAjeuy Appiqels pazireauly | sty

suonenby powmg-OHd JO UOHR[NUIS [BILISWMN 9z




‘SOAJRALISp [enjeds oY) JO SULIS) UT SOALRALISP [eLIdjew a1 ssaidxa 0} pasn Usaq sAey suonenbs say0)S-JOAEN] |

0 JUSIOIJJ0)) UOIBNUINY
00 00V~ 0°08- 0°0CI- 0°091- 0°00C-

[ T _ | _ | _ T _ T 0'8-
m m | | W .
Ay A A N proTTTmeooTeoos [ proTTreTeeees A0V @
" " " ! ! o
" " ! : " Q
. ! : : : 4
: : : : : B 4.
m : ; : "n..w
................ m m m 00 9 Q
! ! ! ' @
: : m : : - mJ
m m m m m 5.
m m m m m c,
i bbb ARREEEEEE A Pooooooomeneees Aoeosememmeeees presmmmmooneoes — 0V L
m m m m w =
w .m w W R AC

................ e el — Ow
m_mh_m=< Anpqe)s paziaeaury g “sig

suonenby pawmg-3yOg JO uone|nuIS [BOLWNN Lt

w
L
POB




SOAIJRALIOP [eneds o) JO SULIS} Ul SIANEALISP [eLIsjew o) ssa1dxa 0} pasn uaaq aAeq suonenba somy |

0 JUSIDIJJO0)) uonenuany
00 0°01- 00T 0°0€- 00~
_ 0°00¢-

-d
—
—
ansnd
—

T T T T Ay ooy M O

....................................... — 0°001-

................... o009

B et Rl Rt ittt it —

................. — 0°001

TUSIOIIJ0 ) UOISIAASI(T

B i R R R R e

\O

°

—
|
1

b o e e e e e e U —0°00C
| (SisA[euy Aypiqe)s paziiedury ¢ 814

suonenby poumg-3[HI JO UOHENWIS [BOLIAWNMN 8z




SOATJRALISP [enjeds of JO SULID) UT SSAIRALISP [LIdjel of) ssa1dxa 0) pasn Ud23q 3AeY suonjenba sax0)§-101ABN |

0 JUSIDIJJO0)) UOENUSHY

00 00~ 0°08- 0°0CI- 0°091-  0°00C
_ T _ _ _ _ _ _ _ T 0v-
A i
M M m . g
: deeeonoonononanes oo Jooommmmemnnnennns fomemennnoooas —0T o
: " : : ” go)
m m m. m m q
| m " “ : . Z}
m M .m w S
........... [ ". ". . OO ﬂ O
m m ." o
: ! : : | o
_ m m m m ]
m m m m : Q.
w demromoeonens SRR doeommmnnneeeee b eenmeees —H07 ©
w w w w w 2
- 99°1=A -

(Siskjeuy Aqels ?ﬁ:ﬁ:i p ‘314

suonjenby powng-3[NHd JO UONE[NILIG [BILIUWMN 62




| ‘SOATJRALISD [erjeds
. 31} JO SULIO) UT SPATJBALIOP [BLISYEW ) Ssa1dXa 0] pasn uaaq sAey suoljenba Ja[nyg
€000°0="U3 "(U0STY) Yo0ys [ULIOU (T YILIA| B SSOIOB UOHELIRA Adonua dJ10adS § “BLA
X |
01 80 9°0 70 0 00
_ I _ T I T _ T I _ 0P
| (@) ) | w
| (@roumg-od —4— | | m
| (OmDpoumg —@— w w o
§930)S-I91A® . o
_ H0)}S-I91ABN SRS S — ) %
_ [ . . o
m m : : m =y
m : m : : G
: ] m : ~ T3
" : : m : =1
“ " " " “ =
: m | : : Q
oo oo R B s oo -0 2
S e e e S o8

suonfenbyg peumg-JOd JO UONENUNG [BOUSWNN 0€




£

"SOAIJBALIOP

[enjeds 9y3 JO SULIS) UT SOAIIRALIOP [BLISJEW 9} SSoIdXa 0} pasn uadq 2AeY suonenbs 19[nyg

So.ouscM ‘(u03Iy) JO0YS [eULIOU ()7 YORIA © SSoIor uoneLeA Adonud om_oomm; 9'31

X
01 80 9°0 v0 0 00
_ 1 1 I I T _ T [ T 0¥
| (@) peumg-0g —4p—
| OmDwoumg —@— i}
" " " w2
m SOY0)S-ISIABN] m : i
I — w 00
m | w m m =
m m m [ m g
! m ! : m . (T
m m : m m =
' ' : . . -
m m m m m S
o oo e R e oo -0 2
e e S e S —og




(A

. 'SOATJBALIOP ?ﬁm%
a1J) JO SWLIS) UT SSATJBALIOP [BLISJEW 3} SS2IdXd 0} Pasn U3aq ALY suonenbs 19Ny

S000°0 = “uy ‘(uo3ry) Jo0ys [eWLIOU G¢ :%E ® sso1or uoneLrea Adonuy L “8iq
X

30 90 v0 ¢0 00

J | J | T 0V
@_xuesm-mwmIQl
.|‘|

(D294) nouwing

<
v

<
o

$90]S-JSTABN

f et ereeme e e - - - - - == = = Gm—

cerrmmeerr e m b s een=

e - —-y

l
<
0

i

<

<
y/Adonjur o1510adS

PR el b
Leverecmeemrneee=da

................. el | A |




| SOATJRALIOP [erjeds
U} JO SULID) U SOATJBALISP [BLIDJRW dY) $S2IdXd 0} pasn Ua3q dAeY suonjenba Jajnyg

10070 = ©uy *(u031y) o0ySs [BULIOU G YIBJA B SSOIOR UOHELIEA Adonuyg 8 ‘814

X

01 80 9°0 v0 ¢0 00

_ T ] T I T _ T _ T 0¥

() poumg-30g —4@p— i

| Owdneoumg —@— |

- - m 00 =
m S9Y0)S-ISTABN] \x m : Taau
w m m , e,
: m m m -y
m : : : : o
e freananneneneees R e Goeenneneeeanes e —0v O
W W w M | 5
m ' ' : ‘ - o
“ m " " " e
" " m <
S T TN . e —08 R
U e SRR L SUURTRRR e oz




| "SOAIJRALISP [eneds oY)
,c JO SULIS) U SOAJRALISP [eLI9jewW o) SSo1dXd 0) Pasn UIaq 9ARY SUOIIENDI S3301G-IAIAEN

100="uy *(W0FIy) JOOYS [BULIOU G¢ UOBJA © SSOIOB UONBLIBA SInjeradud Hm 31

X

01 80 9°0 v'0 0 00
_ 1 I 1 I T _ T _ T v 0-
poumg-y0d —@— -
SaY0)1S-I91AR )
- J0)1§-IolABN ——— | m m 0°0
' T _ " X ~
| m m ﬁ m m =
| | m w w i —
.m w M w w o =
A e A P e v 3
m m m m m =
M | w w m 1A
“ " n " : —
“ " " u : ~
e oo e s e 180
e, e S G S 71

suonenby Newmg-3Hd JO UoHe[NuNg [EdUUMN




i N e e e A AT p——— v (M e s a W e e e e

SOATIRALIOp [eleds oy}
JO SULId) UI SOATRALISP [e1IoeW Y} sso1dxa 0] pasn u92q JARY suorjenba $3301S-191ABN]
cc [ SOATJEA] !

100 = vy “(U03IY) JOOYS [BULIOU CE YOBA B SSOIOE UOLBLIeA £donus orioadg 07 *S1d
| x |

80 90 v0
I _ | _ ._ _ ]
|
poumng-yod —@— ¢

S9Y0)S-IOIABN

<
—
N
o
<
o

T 0V |

<
o

c e e e r el m— - - - - = —

R R bl o

ccegmcaoe-

B iR

|

o

<
[/Adonug 213109dS

1
'
L
1
1
1
‘
]
1
1
L]
'
.
[
1
N .
1
e bl Rt it

.

'

.

4

L

1

1

[}

[}

[

L]

3

]

cemvesacvendencnssncecneee=

Tt +

L]

.

'

1

[

.

.

t

L

.

.

.

.

1

.

t
J e T et il

[}

L}

.

[]

.

,

1

[

1

t

L}

L

[]

1

.

P kel

'
0
‘.
)
'
’
,
.
'
‘
'
.
0
*
'
.
.
-
.
.
.
.
'
+
[
[
*
»
v
.
.
.
v
.
[
'
.
.
1
'
.
.
.
'
[
.
.
.
[
]
[
’
r

.............. — 02l




'SaAIIRALIOP [erjeds oy}
oc JO SULIG) UT SOATIBALISP [B110JEU a1 ss21dxs 0] Pasn Usaq ABY SUOTIENDI $330IS-191ABN

700 = ©uy ‘(uo8Iy) Jo0ys [BULIOU GE YIR]N B SSOIOE UONELIRA smeradwd], 11 “814
X

01 80 0 00
- | T _ _ v0-
| noumg-yog —@—! 3 -
r ..... S930)S-I9IABN e 4 ...... 00
. : ~
M M w o
W w w T —
m m m e
e ) S S e v 3
m : m b
W - =
A— e oo -{8°0




"SOATIRALISP [eneds oy}
.. JO SULId} UI SOATJBALISP [ELISJEW 1) $S21dX5 0) pasn usaq dAeY suorjenbs s9301S-191ABN

700 = Uy "(uo3ry) yOo0ysS [euLIou ¢ YOBJA ® SSoIor uoneleA Adonus o1jroadg Nﬁ ‘31

X

01 80 9°0 0 0 00 .
_ i _ | _ T _ T _ T OV
w noumg-08 —@— m w -
S930)S-ISTABN] X
oeees N R : mreveeseesseses ~100 [
m " n T 3
m : : m : - Q.
m m : : m =
: m : : : o
R qemiemeeseeenees RRRRCEEREEEE A ST ELEEEERTELEE SEERLEEEEECEE — 0 tT]
m m m m m v =
" " " ! " —
" ! " " " - @)
: “ " n " qe)
m m : : : <
...... ........ ........... ................. .............. — 08 W
e e S e, S 071




Numerical Simulation of BGK-Bumnett Equations

Appendix: One

The expressions for the coefficients in the BGK-Bumett flux vector are given below:

4y 2y _(2)
01=—X_ 0,=—T—, 03=+=|(3-
1599 P oy 7)1

0;=25+0,, 0,=0,-1, 03 =—(1+031), 94=(3"'Y)+(°3

95-’-—[(7-1)“03], 96=(372—5)+“’3

3-y 3 5
o-(331). 2 (3o e +30). 2= Py

Q4= %—l_—l)-{(ey = 3)84 + (7 +3)95 + 2106}

The coefficients of the stress and heat transfer terms are given below:

’ all) = 22-v)Q, ald) = -2QiR, a(3) =20Q|R, 3(4) = —4(%—1 + QJR, a0 = -40,R

a6 = —4(92—‘ + Qz)R, =20, a® = 2ry0;, £ =20.R, 809 =2( - 1)
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b =80, — 405(2y - 1)~ 40, — 20, b = @, —Q4(y - 1), 80) =40, - 20
b® = 2(0y + 4040y - 1)), b = 4R, b =—avasR, o) = R

b® = 205(y - 1), b(®) = 403y - 1), !9 =—6ar2R
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Abstract

: In this paper two different forms of Burnett equations are studied which have been

designated as ‘Augmented Burnett Equations’ and ‘BGK-Burmnett Equations’. The
augmented Burnett equations were developed by Zhong to stabilize the solution of the
conventional Bumnett equations which were derived in 1935 by Burnett from the
Boltzmann equation using the second-order Chapman-Enskog expansion. In this
formulation, The conventional Burnett equations are augmented by adding ad hoc third-
order derivatives to stress and heat transfer terms so that the augmented equations are
stable to small wavelength disturbances. The BGK-Burnett equations have been recently
derived by Agarwal and Balakrishnan from the Boltzmann equation using the Bhatnagar-
Gross-Krook (BGK) approximation for the collision integral. These equations have been
shown to be entropy consistent and satisfy the Boltzmann H-Theorem in contrast to the
conventional Burnett equations which violate the second law of thermodynamics. In this
paper, both sets of Burnett equations are applied to compute a 2-D hypersonic flow over a
circular cylinder at Knudsen numbers 0.001 to 0.1. The radius of the cylinder, which is the
characteristic length of the body, determines the Knudsen number. The Steger-Warming
flux-vector splitting scheme is applied to the convective inviscid flux terms. Stress and
heat transfer terms are simply second-order central-differenced. Comparison is made
between the augmented and BGK-Burnett equations solutions and with the Navier-Stokes
calculations. Comparison of the solutions from the augmented Burnett equations with the
Navier-Stokes solutions shows that the difference is significant at high Knudsen number
(Kr=0.1). The solutions from the BGK-Burmnett equations are matched well with those
from the Navier-Stokes equations and the augmented Burnett equations at lower Knudsen
numbers (K»=0.001, 0.01). BGK-Bumett solutions are currently underway at higher
Knudsen numbers.
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Greek symbols

o, Be
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P
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Superscript

(a)
®)

Subscripts

Xy

Nomenclature

total energy
Knudsen number
Mach number
Prandtl number
pressure

heat flux
Reynolds number
gas constant
temperature

wall temperature
time

velocity components in x, y, z direction

coefficients of stress terms in Burnett equations
coefficients of heat flux terms in Burnett equations
coefficients of stress terms in Navier-Stokes equations
coefficients of third order terms in BGK Burnett equations
thermal conductivity

coefficient of viscosity

density

stress tensor

specific heat ratio

third order terms in augmented Burnett equations
third order terms in BGK Burnett equations

derivatives in x and y directions
free stream quantities




1. Introduction

In one of the first attempts to solve the Burnett equations, Fiscko and Chapman® solved
the hypersonic shock structure problem for a variety of Mach numbers and concluded that
the Burnett equations describe the normal shock structure better than the Navier-Stokes

_equations at high Mach numbers. However, in their numerical solution, they experienced
stability problems on finer grids. The linearized Burnett equations were found to be
unstable to small wavelength disturbances. In a subsequent attempt, Zhong® stabilized the
Burnett equations by adding a few linear third order terms on an ad hoc basis. This set of
equations was termed the augmented Burnett equations. The augmented Bumnett
equations did not present stability problems when they were applied to the hypersonic
shock structure and hypersonic blunt body problems. However the augmented Burnett
equations were not entirely successful to compute the flowfields for blunt body wakes and
flat plate boundary layers. Comeaux et. al® have noted that the linear stability analysis is
not sufficient to explain the instability of the Burnett equations with increasing Knudsen
numbers because of many non-linear terms present in the Burnett equations. They have
conjectured that this instability may be due to the fact that the Burnett equations violate
the second law of thermodynamics at high Knudsen numbers.

The highly non-linear nature of the collision integral in the Boltzmann equation is
simplified by representing the collision integral in the Bhatnagar-Gross-Krook (BGK)
form. Balakrishnan and Agarwal® have formulated a new set of entropy consistent 1-D
Bumnett equations from the BGK-Boltzmann equation and using the Navier-Stokes
equations to approximate the material derivatives in the second order terms in the
Chapman-Enskog expansion. The material derivatives are thus expressed in terms of
spatial derivatives using the Navier-Stokes equations. This set of BGK-Burnett equations
contains all the stress and heat flux terms reported by Fiscko and Chapman” and has

additional terms which are similar to the super Burnett terms. Recently, Balakrishnan and

Agarwal® have extended the 1-D BGK-Bumett equations to 2-D BGK-Burnett

equations. In this paper, the augmented Burnett equations® and the 2-D BGK-Burnett
equations® have been used to compute and compare the shock structure and other flow
properties for hypersonic flow over a blunt body in continuum-transition regime.




2. Governing Equations

The governing equations for 2-D compressible viscous flow in Cartesian coordinates are

%+%+%F— =0, 0
where
p
u
0=|",
i @

E and F are the flux vectors of the conserved variables O in the x and y directions.
These flux vectors can be written as

E=E +E,
F=F +F, 3)

where E, and F, are the inviscid flux terms and E, and F), are the viscous flux terms given
as follows:

pu 0
u2 + (o]
El = p p b EV = " >
puv Oz
_(e: +R)U_ G #+0,,V+4 | @)
v ] 0 _
uv (o}
F = pz i F, = 21
pv-+p Oy
_(e, +p)v~ O U+C,V+q, | )

In Eqs. (4) and (5), the stress tensors and heat flux terms, o, and g, are expressed as
follows:

o, =og’)+cg)+ogz)+°?)+,,,+cgp)+0(Knn+1)’
9, =4 +qP +q® +q7 +--+ 4"+ O(Kn™). ©




The zeroth order approximation (#=0) results in the Euler equations,

0
o =0,

and ™
q” =0

The first order approximation represents the Navier-Stokes equations. The stress tensors
and the heat flux terms (#=1) are given as,

of) = —u(ﬁ u, +8,v )
ofy =of) = P-(”y + vx)’
(') = —u(S v, +0,u, )

g =—xI, |
and )
4 = xI,,

where ( ), = d/@x and ( ), = 0/dy. The coefficients, , and 8, are given in Table 1 for the
augmented Burnett equatlonsa) and the BGK-Bumett equatlons<’)

Aug. Burnett Eqns. | BGK-Bumett Eqns. | BGK-Burnett Eqns.
y=14 y =1.666
5, 1.333 1.6 1.333
5, -0.666 -0.4 -0.666

Table 1. The coefficients in the Navier-Stokes Eqns. stress tensors.

Similarly, the second order approximation represents the Bumétt equations. The |
expression for stress and heat flux terms (r7=2) are,
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(10)

(11)

(12)

(13)

Both augmented Burnett and BGK-Bumett equations have same forms of the stress
tensor and heat flux terms. However the two sets of equations have different values of the

coefficients. The coefficients are compared in Table 2.
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Aug. Burnett Eqns. | BGK-Burnett Eqns. | BGK-Burnett Eqns.
Hard-Sphere gas y=14 y =1.666

o, 1.199 -2.24 2222
o, 0.153 -0.48 -4.444
a, -0.600 0.56 1.111
o, -0.115 -1.20 -0.667
oL 1.295 0.0 0.0
oL -0.733 0.0 0.0 .
o, 0.260 -19.6 -5.833
o, -0.130 -5.6 0.0
o, -1.352 -1.6 -1.333
o 0.676 0.4 0.667
a, 1.352 1.6 1.333
Q, -0.898 -19.6 -5.833
o, 0.600 -18.0 4.5
o, -0.676 -0.4 -0.667
o 0.449 -5.6 0.0
oy -0.300 6.0 ~0.667
B, -0.115 -14 -1.667
B, 1.913 -14 -1.667
B, 0.390 0.0 _ Q0.
B, -2.028 2.0 2.0
B, -0.900 2.0 2.0
B, 2.028 2.0 2.0
B, -0.676 0.0 0.0
Y, 10.830 -25.241 -11.101
Y, 0.407 -0.2 -1.0
A -2.269 -1.071 -1.384
Y, 1.209 2.0 2.0
Y, -3.478 2.8 -3333
A -0.611 -1.5 -6.5
Y, 11.033 -11.0 -5.667
Yo -2.060 -1.271 -1.051
Yo 1.030 1.0 1.0
Yo -1.545 -3.0 -3.0
Y1s -1.545 -3.0 -3.0

Table 2. The coefficients in the Burnett and BGK-Burnett
Eqns. stress tensor and heat flux.




The third order approximation (n=3) represents the super Burnett equations. However,
not all of the third order terms of the super Burnett equations are used in the augmented
Burnett and the BGK-Burnett equations. In the augmented Burnett equations, the third
order terms are employed ad hoc basis to obtain stable numerical solutions while
maintaining second order accuracy of the solutions. The third order terms in the
augmented Burnett equations® are given as,

3
(@ _ K
o) = ;—;RT( Oyl + Oy, + 0V + OV, ),

- (14)
@ _ W
Oy =—FRT(a;v,, +0,V,, + 0l + 0l ), _
d (15)
o9 =of
u
= —2-RT( Bsuny +B8uy»f +BSV.\»' +BsVex )
P (16)
. 3 T T
ql( ) = E"‘R( Y2l P02y V13— P + V13— Py )»
pp P P a7
and
5 _ W T T
q§ ) =—R(Y,T,, +Y12 ey Y13 =Py + Y13 —Pry ).
PP P P (18)

The superscript '(a)’ denotes augmented Bumett terms. The coefficients in stress and
heat flux terms are given in Table 3.

o, 0.2222
o, -0.1111
B, 0.1667
Y., 0.6875
Yeo -0.625

Table 3. The coefficients in the augmented Burnett Eqns.

The BGK-Burnett equations have more additional third order terms than the
augmented Burnett equations. These are not added on an ad hoc basis but are derived
from the third order Chapman-Enskog expansion of the BGK-Boltzmann equation. The
third order terms in the BGK-Burnett equations® are given as

3
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R
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(23)

The superscript '(B)' denotes third order stress and heat flux terms in the BGK-Burnett
equations. The coefficients of third order terms in the BGK-Burnett equations, 8's, are
given in Table 4.

y=14 y = 1.666
0, 2.56 1.778
0, 1.36 1.111
6, 0.56 -0.222
6, 0.64 -0.889
0. 0.96 0.444
0, 1.6 1333
0, 0.4 -0.667
0, 0.24 -0.222
0, 1.024 1.185
0, -0.256 -0.593
0, 1.152 1.778
0, 0.16 0.444
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0,. 2.24 2.222
0, -0.56 -1.111
0, 3.6 3.333
B, 0.6 0.333
0,, 1.4 1.667
0, 4.9 4.167
0, 7.04 6.222
0,0 -0.16 -1.778
8, -1.76 3,111
6,, 4.24 4222
0., 3.8 4333
0, 3.4 3.667

Table 4. The coefficients in the third order
terms of BGK-Burnett Eqns.

Finally, the governing equations are nondimensionalized by reference length and free
stream variables and coordinate transformed to the computational -1 domain by the
following relations ’

1=t

£=§(x,»),
and
n=wxy. (24)
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3. Numerical Method

An explicit finite difference scheme has been employed to solve the governing
equations. The Steger-Warming flux-vector splitting method® is applied to the inviscid
flux terms. The second-order central differencing scheme is applied to the stress tensor
and heat flux terms. In the blunt-body flowfield calculations reported in this paper, free
stream conditions were used along the outer boundary. First-order extrapolation of the
interior data was used to determine the flow properties along the exit boundary. Symmetry
boundary conditions were applied to the stagnation streamline. The first-order Maxwell-
Smoluchowski slip boundary conditiors® were used on the wall surface boundary. The
first-order Maxwell-Smoluchowski slip boundary conditions in Cartesian coordinates are:

u -2—61(21-) +3—u—(gj 25
=5 o) TTer\&); (25)
and
_ Z;ZLY_Z_(QT_)
L=T+ a y+1Pr\oy/’ (26)
where

i--zﬁ\f——"
p Y8RT’

The subscript ‘s’ denotes the flow variables on the solid surface of the body. The
reflection coefficient, 5, and the accommodation coefficient, @, were assumed as 1 (for
complete accommodation) in this study.
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4. Application to Blunt Body

The augmented Burnett and the BGK-Burnett equations are applied to compute the
hypersonic flow over a cylindrical leading edge with nose radii of 2m, 0.2m, and 0.02 m.
Since the numbers of grid lines are fixed in £ and 7 directions, the smaller cylinder has the
finer grid system in the physical domain. The grid system in the physical domain is shown
in Fig. 1. The flow conditions are:

M, =100

Re_ =1679

P, =23881N/m’
T, =2084 K

T, =10000 K.

The coefficient of viscosity is calculated by the Sutherland's law,

T3I2
H=6 T+c,

27
Various constants used in the calculation for air are,

Y =14,
Pr=0.72,
R=28704 m* /(sec*“K),
_ c, =1458 x10° kg /sec- m'K'"?,
and
c,=1104 K.

With the given flow conditions and constants, the computations were performed at
Knudsen numbers of 0.001, 0.01, and 0.1 corresponding to the cylinder radii of 2m, 0.2m,
and 0.02m respectively.
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5. Results and Discussion
5.1. Case1: (Kn=0.1)

The comparisons of density, velocity, and temperature changes along the stagnation

streamline are shown in Figs. 2, 3, and 4 respectively. The results are generally consistent

with those of Zhong®. The temperature curves (Fig. 4) show that the present augmented
Burnett solution using the Steger-Warming scheme has a slightly higher maximum
temperature than reported by Zhong®. The Navier-Stokes solutions are also compared
with the augmented Hurnett solutions in Figs. 2 - 4. Since the flow is in the continuum-
transition regime in this case, the differences between the Navier-Stokes and the Burnett
solutions are significant. The shock width in the augmented Burnett solution is larger and
the shock is upstream of that in the Navier-Stokes solution. The density and temperature
contours of the Navier-Stokes solutions and the augmented Burnett solutions using the
present scheme are shown in Figs. 5 - 8. The shock structure of the present augmented
Burnett solutions agrees well with that of Zhong®. The BGK-Burnett solutions are
currently in progress for this case.

5.2. Case 2: (Kn=10.01)

The comparisons of density, velocity, and temperature changes along the stagnation
streamline between the Navier-Stokes, the augmented Burnett, and the BGK-Burnett
solutions are shown in Figs. 9, 10, and 11 respectively. The resulting curves are almost
coincident with each other. Only small differences are observed at the front of the shock.
The velocity curve of the BGK-Burnett solution (Fig. 10) shows an unexpected high peak
at the front of the shock. The density and temperature contours of each equation solution
are also shown in Figs. 12-17. The shock structures are also similar to each other.

5.3. Case 3: (Kn = 0.001)

At this small Knudsen number, the solutions of the Navier-Stokes, the augmented
Burnett, and the BGK-Burnett equations are identical. Since the flow is in the continuum
regime, the Navier-Stokes equations already describe the flow field accurately. Figs. 18,
19, and 20 show the density, velocity and temperature changes along the stagnation
streamline respectively. Figs. 21 - 26 show the density and temperature contours for the
Navier-Stokes, the augmented Burnett, and the BGK-Burnett equations.
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6. Conclusions

The 2-D augmented Burnett equations and the BGK-Burnett equations have been
applied to compute the hypersonic blunt body flow (for air) at Kn = 0.1, 0.01, and 0.001.
The explicit finite difference scheme with Steger-Warming flux-vector splitting has been
employed to discretize the convective terms in the flow equations. Simple second-order
central differencing is used to discretize the stress and heat-flux terms. The density,
velocity, and temperature changes along the stagnation streamline were compared for each
set of equations. At Kn = 0.1, the resulting flow properties and the shock structure are
consistent with the results reported by Zhong®. At tow Knudsen number (Kn < 0.01), the
Navier-Stokes solutions and the two Bumnett solutions are identical. The augmented
Burnett equations were always stable at all Knudsen numbers and all grid sizes reported in
this paper. However, the BGK-Burnett equations have experienced some convergence
problem on the finer grids at Kn=0.1. This issue is being investigated currently.
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Fig. 5. Navier-Stokes density contours for case 1
(Kn=0.1).

Fig. 6. Augmented Burnett density contours for
case 1 (Kn=0.1).
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Fig. 7. Navier-Stokes temperature contours for
case 1 (Kn=0.1).
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Fig. 12. Navier-Stokes density contours for case 2
(Kn=0.01).
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Fig. 13. Augmented Burnett density contours for
case 2 (Kn=0.01).

Fig. 14. BGK- Burnett density contours for case 2
(Kn=0.01).
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Fig. 15. Navier-Stokes Temperature contours for
case 2 (Kn=0.01).

Fig. 16. Augmented Burnett temperature contours
for case 2 (Kn=0.01).
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Fig. 17. BGK- Burnett temperature contours for
case 2 (Kn=0.01).

254

20— Novier = Slokes

o Augmented Burnell
-+~ BCK~-Dunell

w

Rho/Rho0

o

o —
-2.00 - 1.60 -1.20 ~-80 -60 -.40 -20 .00
X(su)
Fig. 18. Density along stagnation streamline for
case 3 (Kn=0.001).

25




X(mn)

Fig. 19. Velocity along stagnation streamline for

case 3 (Kn=0.001).
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Fig. 20. Temperature along stagnation streamline

for case 3 (Kn=0.001).
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Fig. 21. Navier-Stokes density contours for case 3

(Kn=0.001).

Fig. 22. Augmented Burnett density contours for
case 3 (Kn=0.001).
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Fig. 23. BGK-Burnett density contours for case 3
(Kn=0.001).

Fig. 24. Navier-Stokes Temperature contours for
case 3 (Kn=0.001).
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Fig. 25. Augmented Burnett Temperature contours
for case 3 (Kn=0.001).

Fig. 26. BGK-Burnett Temperature contours for
case 3 (Kn=0.001).
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